*Note: This post was written by my two doctoral students, Lara Jasien and Nadav Ehrenfeld, as part of the Virtual Conference on Mathematical Flavors. This essay responds to the prompt *“How do teachers move the needle on what their kids think about the doing of math?*” It is also part of a strand inside that conference, inspired by an essay by Tim Gowers,**“**Two Cultures in Mathematics.**“*

*Before we begin responding to Gowers’ essay, we’d like to share a little bit about what draws us to this conversation. As budding researchers of mathematics teaching and learning, we spend our days watching teachers go about their daily routines with their students. We look for the ways teachers support their students to engage in meaningful learning and position them as capable, curious thinkers. Our work is fundamentally concerned with the ways classroom culture shapes what it means to teach, learn, and do mathematics. Gowers’ essay provides us with an interesting new lens on the role of culture in mathematics. We want to share (what we think is) a problem-of-practice worth considering and then point to an often overlooked teaching move that we recently saw a teacher use in ways that counteracted this problem-of-practice.*

As educators and learners of mathematics, our experiences usually involve engaging students in correctly solving mathematical problems that are predetermined, handed down to us over generations through textbooks and pacing guides (with slight variations). This means that students have few opportunities to engage in a core element of mathematics — finding and articulating problems that are interesting to solve. We think this is intimately connected to a missing aspect of mathematics culture in typical math education: the *mathematical aesthetic*. Mathematicians’ aesthetic tastes and values lead them to pursue some problems, solution strategies, and forms of proof write-ups over others. When mathematicians’ inquiry is driven by their aesthetics, they engage in exploration, noticing, wondering, and problem-posing.

The mathematical aesthetic is the mechanism by which mathematicians distinguish between what they experience as meaningful, interesting mathematics and trivial, boring mathematics. In his essay, *The Two Cultures of Mathematics, *W.T. Gowers identified two groups of mathematicians who find each other’s work equally distasteful (with a little dramatic flare): problem solving mathematicians and theoretical mathematicians. Typically, school instruction exposes students to problems that fit both cultures of mathematics: Some school mathematics is done for mathematics sake, some is done for the purpose of real life or pseudo real life (word problems) problem solving. Yet, when do students have the opportunity to develop aesthetic preferences for different ways of engaging with and thinking about mathematics?

In our work, we have seen classrooms with cultures that support students in posing questions to their peers — questions like, *I wonder if there is a reason for that?* or *What’s your hunch?*. In these classrooms, we see students begin to be interested in and passionate about mathematics. In our minds, when students develop such passionate tastes about meaningful mathematics, we are on a good track for empowering our students for success.

The questions we just mentioned are actually questions we recently overheard a teacher asking her students as her last statement before exiting small group conversations. We consider her enthusiastic questions to be a form of modelling mathematical aesthetics, prompting students to be curious, explore, wonder, and use their intuition. While ideally the classroom culture would eventually lead to students asking themselves and each other these kinds of aesthetic questions, we know that our own authentic intellectual curiosity as educators does not go unnoticed by our students. *Importantly, this teacher did not ask these questions and then hang around and wait for student answers. She left the students with juicy questions that they could investigate together.*

As teachers, we rarely get feedback on how our exit moves from small group conversations affect their conversation or the classroom culture. Of course, some exit strategies –– such as telling students the answer or funneling them towards it –– will clearly lead to cultures where students see mathematics as a discipline of quick-and-correct answer finding. This view of mathematics can preclude opportunities for students to develop as autonomous doers and thinkers of mathematics. Fortunately, options for productive exit strategies and modelling of intellectual interests are many. These options also present new decision-making challenges to teachers as what happens when we exit the conversation becomes far less predictable. Our students do not need to have the same mathematical tastes as we do, but we do want them to feel empowered and intellectually curious in our classrooms. *By foregrounding noticing, wondering, and problem-posing as authentic mathematical practices, we can support students in developing their own mathematical aesthetic.* Of course, doing so requires us to model genuine intellectual curiosity, make room for uncertainty and ambiguity in our tasks (groupworthy!), create access to multiple resources for pursuing mathematical questions (Google is acceptable!), and scaffold for conversation rather than bottom-lines (exit moves!). Leaving students with a juicy, natural question is a start.